2,594 research outputs found

    Characterization of nuclear mitochondrial insertions in the whole genomes of primates

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de Catalunya i Obra Social "La Caixa"The transfer and integration of whole and partial mitochondrial genomes into the nuclear genomes of eukaryotes is an ongoing process that has facilitated the transfer of genes and contributed to the evolution of various cellular pathways. Many previous studies have explored the impact of these insertions, referred to as NumtS, but have focused primarily on older events that have become fixed and are therefore present in all individual genomes for a given species. We previously developed an approach to identify novel Numt polymorphisms from next-generation sequence data and applied it to thousands of human genomes. Here, we extend this analysis to 79 individuals of other great ape species including chimpanzee, bonobo, gorilla, orang-utan and also an old world monkey, macaque. We show that recent Numt insertions are prevalent in each species though at different apparent rates, with chimpanzees exhibiting a significant increase in both polymorphic and fixed Numt sequences as compared to other great apes. We further assessed positional effects in each species in terms of evolutionary time and rate of insertion and identified putative hotspots on chromosome 5 for Numt integration, providing insight into both recent polymorphic and older fixed reference NumtS in great apes in comparison to human events

    Altered expression of caspases-4 and -5 during inflammatory bowel disease and colorectal cancer : diagnostic and therapeutic potential

    Get PDF
    Caspases are a group of proteolytic enzymes involved in the co-ordination of cellular processes, including cellular homeostasis, inflammation and apoptosis. Altered activity of caspases, particularly caspase-1, has been implicated in the development of intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, the involvement of two related inflammatory caspase members, caspases-4 and -5, during intestinal homeostasis and disease has not yet been established. This study demonstrates that caspases-4 and -5 are involved in IBD-associated intestinal inflammation. Furthermore, we found a clear correlation between stromal caspase-4 and -5 expression levels, inflammation and disease activity in ulcerative colitis patients. Deregulated intestinal inflammation in IBD patients is associated with an increased risk of developing CRC. We found robust expression of caspases-4 and -5 within intestinal epithelial cells, exclusively within neoplastic tissue, of colorectal tumours. An examination of adjacent normal, inflamed and tumour tissue from patients with colitis-associated CRC confirmed that stromal expression of caspases-4 and -5 is increased in inflamed and dysplastic tissue, while epithelial expression is restricted to neoplastic tissue. In addition to identifying caspases-4 and -5 as potential targets for limiting intestinal inflammation, this study has identified epithelial-expressed caspases-4 and -5 as biomarkers with diagnostic and therapeutic potential in CRC

    Copy number variation genotyping using family information

    Get PDF
    BACKGROUND: In recent years there has been a growing interest in the role of copy number variations (CNV) in genetic diseases. Though there has been rapid development of technologies and statistical methods devoted to detection in CNVs from array data, the inherent challenges in data quality associated with most hybridization techniques remains a challenging problem in CNV association studies. RESULTS: To help address these data quality issues in the context of family-based association studies, we introduce a statistical framework for the intensity-based array data that takes into account the family information for copy-number assignment. The method is an adaptation of traditional methods for modeling SNP genotype data that assume Gaussian mixture model, whereby CNV calling is performed for all family members simultaneously and leveraging within family-data to reduce CNV calls that are incompatible with Mendelian inheritance while still allowing de-novo CNVs. Applying this method to simulation studies and a genome-wide association study in asthma, we find that our approach significantly improves CNV calls accuracy, and reduces the Mendelian inconsistency rates and false positive genotype calls. The results were validated using qPCR experiments. CONCLUSIONS: In conclusion, we have demonstrated that the use of family information can improve the quality of CNV calling and hopefully give more powerful association test of CNVs

    Copy number variation genotyping using family information

    Full text link
    Abstract Background In recent years there has been a growing interest in the role of copy number variations (CNV) in genetic diseases. Though there has been rapid development of technologies and statistical methods devoted to detection in CNVs from array data, the inherent challenges in data quality associated with most hybridization techniques remains a challenging problem in CNV association studies. Results To help address these data quality issues in the context of family-based association studies, we introduce a statistical framework for the intensity-based array data that takes into account the family information for copy-number assignment. The method is an adaptation of traditional methods for modeling SNP genotype data that assume Gaussian mixture model, whereby CNV calling is performed for all family members simultaneously and leveraging within family-data to reduce CNV calls that are incompatible with Mendelian inheritance while still allowing de-novo CNVs. Applying this method to simulation studies and a genome-wide association study in asthma, we find that our approach significantly improves CNV calls accuracy, and reduces the Mendelian inconsistency rates and false positive genotype calls. The results were validated using qPCR experiments. Conclusions In conclusion, we have demonstrated that the use of family information can improve the quality of CNV calling and hopefully give more powerful association test of CNVs.http://deepblue.lib.umich.edu/bitstream/2027.42/112374/1/12859_2012_Article_5896.pd

    Promoting dietary changes for achieving health and sustainability targets

    Get PDF
    Globally, about 21–37% of total greenhouse gas (GHG) emissions are attributable to food systems. Dietary-related non-communicable diseases have increased significantly from 1990–2019 at a global scale. To achieve carbon emissions targets, increase resilience, and improve health there is a need to increase the sustainability of agricultural practises and change dietary habits. By considering these challenges together and focusing on a closer connection between consumers and sustainable production, we can benefit from a positive interaction between them. Using the 2019 EAT Lancet Commission dietary guidelines, this study analysed interview data and food diaries collected from members of Community Supported Agriculture (CSA) schemes and the wider UK population. By comparing the environmental sustainability and nutritional quality of their respective diets, we found that CSA members consumed diets closer to the EAT Lancet recommendations than controls. We identified significant differences in daily intakes of meat; dairy; vegetables; legumes; and sugar, and the diets of CSA members emitted on average 28% less CO2 compared to controls. We propose that agricultural and wider social and economic policies that increase the accessibility of CSAs for a more diverse demographic could support achieving health, biodiversity, and zero-emission policy targets

    Association of CNVs with methylation variation.

    Get PDF
    Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype

    Translation of upstream open reading frames in a model of neuronal differentiation

    Full text link
    Abstract Background Upstream open reading frames (uORFs) initiate translation within mRNA 5â€Č leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5â€Č leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. Results Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes, including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However, CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation. Conclusion This work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.https://deepblue.lib.umich.edu/bitstream/2027.42/149183/1/12864_2019_Article_5775.pd

    Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the <it>Xenopus laevis </it>tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits.</p> <p>Results</p> <p>Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1ÎČ, IL-6 and tumor necrosis factor (TNF)-α. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-α on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-α resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-α treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-α-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures.</p> <p>Conclusions</p> <p>Taken together our data are consistent with a model in which TNF-α causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders.</p

    The global decline of reptiles, deja’ vu amphibians

    Get PDF
    Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change
    • 

    corecore